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— Analysis of the various techniques and approaches needed
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Difficulty in dealing with NN due to non-
linearity providing activation functions
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(e.g. sigmoid, RelLU)
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— Lack of comprehensive and standardized framework for verifying properties of NN
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Deep neural networks are widely used for nonlinear function approximation, with
applications ranging from computer vision to control. Although these networks involve
the composition of simple arithmetic operations, it can be very challenging to verify
whether a particular network satisfies certain input-output properties. This article
surveys methods that have emerged recently for soundly verifying such properties.
These methods borrow insights from reachability analysis, optimization, and search.
We discuss fundamental differences and connections between existing algorithms. In
addition, we provide pedagogical implementations of existing methods and compare
them on a set of benchmark problems.

1 Introducti
mroduction Selected the most frequently used, and
Neural networks [26] have been widely used in many applications, such as image classification

and understanding [28], language processing [42], and control of autonomous systems [44]. re p re S e ntat ive te C h n i q u e fo r e a C h Catego r i e S

These networks represent functions that map inputs to outputs through a sequence of layers.
At each layer, the input to that layer undergoes an affine transformation followed by a fo r resea rC h
simple nonlinear transformation before being passed to the next layer. These nonlinear
transformations are often called activation functions, and a common example is the rectified
linear unit (ReLU), which transforms the input by setting any negative values to zero.
Although the computation involved in a neural network is quite simple, these networks
can represent complex nonlinear functions by appropriately choosing the matrices that
define the affine transformations. The matrices are often learned from data using stochastic
gradient descent.

Neural networks are being used for increasingly important tasks, and in some cases,
incorrect outputs can lead to costly consequences, Traditionally, validation of neural networks
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1.Reachability

Reachability | Optimization
. Utilizing layer-by-layer reachability analysis
MaxSens Primal Dual to compute output reachable set
ExactReach NSVerify Duality
A2 MIPVerify ConvDual 2. Optimization
_ Considering the neural network itself as a
ILP Certify constraint in the optimization process
FastLin ReluVal Sherlock BaB
FastLip DLV Reluplex Planet 3. Search
Search for a case to falsify the assertion
Neurify Search Y
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Marabou

Reluplex: apply simplex algorithm to RelLU activated NN

Searches for a variable assignment that simultaneously satisfies
the query’s linear and non-linear constraints

1.
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Encode RelLU neuron into a weighted sum variable, and an
RelLU activation function variable

Repeatedly correct a violated linear constraints or a violated
non-linear constraint

upgrade version of Reluplex deals with piecewise-linear activation functions

Support network-level reasoning and deduction based on network topology

—> Transform non-linear constraints into linear constraints
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DeepPoly: abstractor transformers to calculate reachable set
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o 1. Expand neuron into affine transformation and activation
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(a) Naive concretizaion

(b) Symbolic linear relaxation

Neurify: interval analysis to compute output set

Upgrade version of ReluVal

1.

2. lterative
(ReluVal)

Enhancements

Use symbolic interval propagation (ReluVal)

refinement to

1. Symbolic linear relaxation

reduce overestimation

2. Directed constraint refinement
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Lack of comprehensive and standardized framework for verifying properties of NN

Current approaches suffers from scalability problem yet unable to deal with realistic-sized
neural networks

Still from Reluplex, Marabou, DeepPoly, Neurify, to ImageStar

- Techniques getting more powerful
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