

1

Abstract

In this paper we present results of applying pre-existing

methods designed for purposes of recognizing printed texts

to handwritten math formula recognition. Experimental

results show that despite being used for a different purpose,

it is a viable approach. We combined scene text detection

methods and image-to-markup language methods to

recognize and predict multiple formulas in a given

handwritten image. Existing methods are based on printed

images, so we modified some parts to apply it on

handwritten data. We used CROHME (Competition on

Recognition of Online Handwritten Mathematical

Expressions) 2013 dataset to generate synthesized formula

scene images, and to train and test the image to markup

language model. The proposed scene detection method

achieves an F1-score of 0.70 on our own data set. The

proposed image to markup language methods achieved

32.86% of accuracy on the generated test set with the

optimal condition.

1. Introduction

Despite advances in digital media and the ability to write

in digital format, some people still prefer writing on paper.

There are many OCR techniques for characters, English

sentences, but not many for math formulas, and especially

not many for handwritten math formulas.

In this paper, we define math formula recognition as two

problems of localizing handwritten formulas from an image

and converting the localized formulas into markup

language such as Latex. We div ide recognizing formula

problem into two subproblems, math formula detection and

image-to-markup conversion.

For detection, we used a scene text detection approach.

Purpose of it is to detect bounding box or bounding

polygons of text in a various circumstance. We apply the

basic idea of it to detect bounding boxes of math formulas.

For conversion to markup, we used a neural

encoder-decoder model provided by Harvard NLP

originally used for conversion from rendered images of

LaTeX code to LaTeX markup. To train and evaluate the

model, dataset of handwritten formulas of varying

complexity

2. Problem: Math Formula Detection

2.1. Model

We used fully convolutional neural network. It is based

on EAST [2] model. It consists of Feature extractor,

Feature merging, and output layer. For feature extractor,

pre-trained convolutional network on ImageNet dataset can

be used. We first used VGG16 as a backbone feature

extractor. Feature merging branch gradually merge

extracted features, by unpooling last layer and

concatenating it with current feature map. We used

modified output layer of EAST model. It originally predicts

score map, RBOX geometry, QUAD geometry. Instead, we

predicted score map, side end vertex score map, side vertex

geometry. It requires less complexity and it was efficient

for long and complex texts.

Figure 1. Network model of EAST [2]

Handwritten Math Formula Recognition

Keechang Choi

POSTECH
Dept. Mathematics

keechang@postech.ac.kr

Seunghyun Chae
POSTECH

Dept. Computer Science
shchae7@postech.ac.kr

Handwritten Math Formula Recognition

Keechang Choi

POSTECH
Dept. Mathematics

keechang@postech.ac.kr

Seunghyun Chae
POSTECH

Dept. Computer Science
shchae7@postech.ac.kr

2

2.2. Data

To detect handwritten math formulas, we generated our

dataset by scattering each formula into background images.

We could easily calculate the ground truth label of the

dataset by writ ing the scattered position of each images. To

get each formula image, we pre-processed CROHME

(Competition on Recognition of Online Handwritten

Mathematical Expressions) 2013 dataset. It consists of

approximately 8000 handwritten math formula. inkml file

(ink trace data of handwritten formulas, and the ground

truth markup code for the formula). Ink traces are converted

to png and images of formula are extracted.

Then 1~10 images among whole image set are randomly

decided and distributed into background image files. We

first generated and trained the model on 1000 (1024 x 1024)

synthesized images in an empty background with larger

space between formulas (dataset1). Next, we t ra ined and

tested on 1000 (1280 x 720) another synthesized images

scattered densely on three d ifferent backgrounds:

blackboard, illuminated paper, empty (dataset2).

2.3. Process

We first examined existing methods of scene text

detection techniques. First, we tried to apply CRAFT

(Character Region Awareness for Text Detection) [3]

methods into our problem. It predicts confidence map of

each character in various circumstances with affinity score

map which describes connection of consecutive characters.

CRAFT was able to detect text of polygonal shape and

we though that it would work well with math formulas.

However, compared to most of common texts where all

characters are connected linearly, math formulas are also

connected vertically, and some expressions are nested

inside others. Because of such properties, the complex

connections and relations on math formulas were hard to

label, and difficult to train by using CRAFT.

We found EAST model seems to capture text bounding

boxes well in various circumstances without considering

the orientation of connection, but not the math formulas. So,

we decided to train this model with our dataset.

However, original EAST model showed low efficiency

on finding bounding boxes of long math formula . We

analyzed it to be because of the complexity of its last output

layer. We decided to delete rotation prediction and to

predict both sides ends of the formula. It decreased

computational complexity and increased performance on

long math formulas.

2.4. Implementation

Preprocess and labeling processes are the same the EAST

model. We used VGG16 as the backbone of the feature

extractor. For loss function, we adopted balanced cross

entropy to predict score map of each point and side end

scope map, introduced by the EAST paper. For side vertex

coordinates, we used smoothed-L1 loss which was used for

QUAD region in the original paper.

We first converted all the data images to have horizontal

size 512 and labeled on each pixel with output scores. For

dataset 1, training was done 12 epoch and dataset 2 in 40. In

both cases, 10% of the training data was used for validation

set.

2.5. Evaluation

For evaluation, we use the same strategy used for

COCO-text. We determined the detected box is True

Positive (TP) when its IoU (Intersection over Union) with

the ground truth box is greater than the IoU threshold, and

False Positive (FP) when it IoU is less than the IoU

threshold. The bounding boxes that should be detected but

not found are marked as False Negative (FN). Based on the

number of TP, FP, FN, we calculated precision score, recall

score, and F1-score. Then F1 score can estimate precision

and accuracy of the results. Because a ll three scores are

dependent on IoU threshold, we calculated 10 scores

corresponding to IoU thresholds in a range of 0.5 to 0.95

increased by 0.05. By averaging those 10 scores, we

calculated final averaged scores.

2.6. Result

2.6.1 Qualitative results.

Upper part of Figure 2 and 3. shows detected boxes, and

Figure 2. Qualitative results on the dataset1

Figure 3. Qualitative results on the dataset2

3

lower part of the figures shows visualized score map. Red

part means score of the pixel is higher than the threshold.

Yellow and green part means each side (left and right) end

score of the pixel is higher than the threshold.

On first dataset, it seems to detect better on longer

formula and the formulas whose characters are in a similar

size. Fractions, subscripts, and superscripts are difficult to

detect and be recognized as one formula . In other models,

they were not contained in one bounding box, but were

separated into several bounding boxes.

However, with the model trained by dataset 1, we could

see that fractions, subscript, and superscript are detected

and included in one bounding box.

On the second dataset, it detected well on empty

backgrounds, but images on other background showed

problems. Some formulas are not detected or detected in a

merged form because its side end is not well detected.

2.6.2 Quantitative results

On dataset1, when IoU threshold is less than 0.90, we got

more than 62% well-matched bounding boxes. As

compared with qualitative results, its performance was

quite desirable. However, on dataset2, performance

decreased rapidly.

2.7. Conclusion

We got the desirable result on the simpler data , dataset1.

However, the data set that we generated is that of restricted

circumstances. Model trained with dataset2, containing

more generalized data, showed rapidly decreased

performance. We concluded that we need to augment the

data set rationally, and we may need to change models to

increase the performance. Unlike detecting individual

characters or linearly connected texts, detecting math

formulas has several properties and difficulties. Despite

needing modification to increase performance, we showed

that bounding boxes of math formula can be detected by

using existing scene text detection methods and by

modifying them to be applied on formulas.

3. Problem: Image-to-Markup Conversion

We define the image-to-markup conversion problem as

converting detected handwritten math formulas into LaTeX

or MathML math formula markup.

3.1. Model

Our model is based on the encoder-decoder model [1].

The model is comprised of three components,

convolutional network (CNN), row encoder, and decoder.

CNN extracts visual features from the input image. Then

RNN row encoder is applied to each row in the final feature

map. The RNN decoder with a visual attention mechanism

then uses the encoded features to produce the final outputs.

Figure 4. Network structure for image-to-markup

conversion.

3.2. Data

We used two publicly available handwritten math

formula datasets. One, dataset provided by CROHME

(Competition on Recognition of Online Handwritten

Mathematical Expressions) 2013 was used. Of the

CROHME 2013 dataset, KAIST and MathBrush dataset

were p rimarily used. KAIST dataset is comprised of

approximately 1k images and MathBrush, approximately

3k.

Table 2. CROHME dataset categorization standards

Table 1. Average precision, recall, F1 score of each dataset

4

The whole CROHME dataset is also used and divided

according to complexity of the formulas. Table 1. Shows

the standard in which the dataset was categorized.
As data were stored in InkML file format, ground truth

math formulas were extracted, and ink traces were

converted to png image files. The ground truth from

INKML is in MathML format, different from that of LaTeX.

However, as there seemed to be no sign ificant difference

between the two, no further preprocessing was done to

convert MathML to LaTeX.

Two, Im2latex-100k-handwritting dataset provided by

Harvard NLP was used. From 100k data, datasets of size 1k,

2k, 5k, denoted, Im2latex-1k, Im2latex-3k, Im2latex-5k are

extracted for use.

Both dataset images are preprocessed to reduce

computation and needed memory. Original images are

cropped and padded with 8 pixels on all sides. Then are

down sampled to half of their original sizes.

3.3. Process

OCR techniques existed for rendered images of math

formula, but not many for handwritten math formulas. We

decided to directly apply the model provided by [1].

Harvard NLP provided an official implementation of the

paper in Torch. Training the official implementation in

Google Colab proved to be a challenge, and to enable

training, we decided to implement the paper in Pytorch.

There already existed an unofficial implementation of

the paper in GitHub. However, the implementation was

incomplete, and needed fixing. We created an evaluation

code and fixed other miscellaneous bugs. Then trained

using the CROHME 2013 and Im2latex-100k-handwrit ing

dataset.

Training with Im2latex-100k-handwriting proved

difficult with the small datasets providing no training at all.

Deducing that it was because of the complexity of the math

formulas along with small number of training data, we

decided to focus on training with CROHME dataset which

contained simple math formulas.

We decided to further separate the CROHME dataset

according to math formulas’ complexity. Training with

separated CROHME dataset according to complexity,

proved to be productive and resulted in successful

conversion from image to markup.

3.4. Implementation

Given that Google Colab disconnect after a certain

period of time, Time-consuming long-term training was

impossible and hence the epoch was fixed at 25.
The initial learning rate is set to 3e-4, and we halve it

once the validation average loss does not decrease. Weights

for the model are saved after each epoch and weight with

the minimum validation loss was chosen for evaluating.

3.5. Evaluation

The evaluating code stores the reference and result

markup in separate files. Our core evaluation method is to

compare them. Spatial arrangements and blank spaces in

formula images in ground truth is denoted as <pad>.

Sequences of <pad> has no formula meaning. Character by

character comparison couldn’t be done and comparisons

were manually done. Markups with less than two different

components were deemed to be match.

3.6. Results

Table 3. Im2latex dataset experiments.

The experimental results on Im2latex dataset can be seen

in Table 2. These resu lts compare evaluation results of

several datasets of different sizes, 1k, 2k, 5k. For each size,

the model was unable to convert every image to the correct

markup and returned sequences of <unk>.

Table 4. CROHME 2013 KAIST, MathBrush dataset

experiments.

Figure 5. Example output of model trained with MathBrush

dataset. The two upper markups result in a match and the

two lower markups result in a mismatch.

The experimental results on CROHME 2013 KAIST and

MathBrush dataset can be seen in Table 3. The CROHME

2013 dataset is comprised of math formulas simpler than

that of Im2latex-100k-handwritten dataset. That is why

despite KAIST and Im2latex-1k dataset being near size,

performances when dealing with KAIST dataset is better.

5

For the same reason performance of model trained on

MathBrush dataset is better than one trained with

Im2latex-3k.

Table 5. CROHME level-0~4 dataset experiments

Table 4 shows results on varying degrees of math

formula complexity. Unexpectedly, even with much

simpler datasets, model was not able to convert image to

markup. Only model trained with CROHME level-0

returned some semblance of a result and achieve 3.3%

accuracy.

Table 6. Handwritten image to markup experiments.

Compares accuracy between different models used.

Comparison between best performance achieved by our

method and other handwritten math formula

image-to-markup results can be seen in Table 5. All other

models were trained with the full CROHME 2013 and 2014

dataset.

3.7. Conclusion

As expected, when used for handwritten images, the

model performed worse compared to when used for

rendered images. Im2latex dataset contained complex

formulas and it was difficult to train with small datasets.

Compared to the amount of possible input’s formula spa tial

arrangement and used symbol, the datasets were too small.

As for CHROME level-0~4 dataset, even though they

were comprised of much simpler formulas, by extracting

them from the whole CROHME dataset, the number of data

was also too small. We deduce the reason for training with

KAIST and MathBrush data being successful, as a balanced

mix of formula complexity and number of data .

Despite being limited on computing resources, scale of

dataset and training, we were able to d irectly use models for

rendered-image-to-latex to handwritten images.

Even without additional preprocessing to approximate

handwriting images to rendered images, it was shown it is

possible. With increased scale of dataset and more

computing resources, we expect the performa nce to

increase and the model to work for Im2latex data as well.

3. Final Conclusion

We have presented that pre-existing models and method

used for general OCR and rendered image-to-markup is a

viable approach to math formula recognition. We separated

the recognition task into two parts, detecting formula

bounding boxes from an image containing multiple

formulas and predicting a latex code from a formula image.

We planned to develop one integrated model when we

managed to solve the two subproblems, but faced technical

difficulties, and were unable to do so.

One of the most serious difficulty was preparing the

dataset. We generated handwritten math formula data by

processing CROHME 2013 data set and labeled it with

position of bounding boxes and ground truth latex code.

Taking into account that rendered image-to-markup

approach by Harvard NLP used im2latex dataset with 100k

images, we assumed getting generally working resu lt with

the CROHME dataset which is roughly less than 10k would

be difficult. So, we d ivided dataset with various criterion,

and trained and tested on them to get the results.

We used Google Colab to train the model due to the

absence of computing resources. Since our approach

required computationally heavy tasks, training the model

took extremely long and was the most difficult part of the

project. If we can train the model on bigger data set with

more powerful computing resource, we expect our div ided

data set would produce reliable results and perform well

enough to be used on general handwritten math formula

images.

References
[1] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and

Alexander M. Rush. Image-to-markup generation with

coarse-to-fine attention. ICML, 2017

[2] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang

Zhou, Weiran He, and Jiajun Liang. EAST: An Efficient and
Accurate Scene Text Detector. CVPR, 2017

[3] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character

region awareness for text detection. CVPR, 2019.

