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Abstract 

 

In this paper we present results of applying pre-existing 

methods designed for purposes of recognizing printed texts 

to handwritten math formula recognition. Experimental 

results show that despite being used for a different purpose, 

it is a viable approach. We combined scene text detection 

methods and image-to-markup language methods to 

recognize and predict multiple formulas in a given 

handwritten image. Existing methods are based on printed 

images, so we modified some parts to apply it on 

handwritten data. We used CROHME (Competition on 

Recognition of Online Handwritten Mathematical 

Expressions) 2013 dataset to generate synthesized formula 

scene images, and to train and test the image to markup 

language model. The proposed scene detection method 

achieves an F1-score of 0.70 on our own data set. The 

proposed image to markup language methods achieved 

32.86% of accuracy on the generated test set with the 

optimal condition. 

 

1. Introduction 

Despite advances in digital media and the ability to write 

in digital format, some people still prefer writing on paper. 

There are many OCR techniques for characters, English  

sentences, but not many for math formulas, and especially 

not many for handwritten math formulas. 

In this paper, we define math formula recognition as two 

problems of localizing handwritten formulas from an image 

and converting the localized formulas into markup 

language such as Latex. We div ide recognizing formula 

problem into two subproblems, math formula detection and 

image-to-markup conversion.  

For detection, we used a scene text detection approach. 

Purpose of it  is to detect bounding box or bounding 

polygons of text in a various circumstance. We apply the 

basic idea of it to detect bounding boxes of math formulas. 

For conversion to markup, we used a neural 

encoder-decoder model provided by Harvard NLP 

originally used for conversion from rendered images of 

LaTeX code to LaTeX markup. To train and evaluate the 

model, dataset of handwritten formulas of varying 

complexity  

 

2. Problem: Math Formula Detection 

2.1. Model 

We used fully convolutional neural network. It is based 

on EAST [2] model. It consists of Feature extractor, 

Feature merging, and output layer. For feature extractor, 

pre-trained convolutional network on ImageNet dataset can 

be used. We first used VGG16 as a backbone feature 

extractor. Feature merging branch gradually merge 

extracted features, by unpooling last layer and 

concatenating it with current feature map. We used 

modified output layer of EAST model. It originally  predicts 

score map, RBOX geometry, QUAD geometry. Instead, we 

predicted score map, side end vertex score map, side vertex 

geometry. It requires less complexity and it was efficient 

for long and complex texts. 

 

 
Figure 1. Network model of EAST [2] 
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2.2. Data 

To detect handwritten math formulas, we generated our 

dataset by scattering each formula into background images. 

We could easily calculate the ground truth label of the 

dataset by writ ing the scattered position of each images. To 

get each formula image, we pre-processed CROHME 

(Competition on Recognition of Online Handwritten 

Mathematical Expressions) 2013 dataset. It consists of 

approximately 8000 handwritten math formula. inkml file  

(ink trace data of handwritten formulas, and the ground 

truth markup code for the formula). Ink traces are converted 

to png and images of formula are extracted.  

Then 1~10 images among whole image set are randomly 

decided and distributed into background image files. We 

first generated and trained the model on 1000 (1024 x 1024) 

synthesized images in  an empty background with larger 

space between formulas (dataset1). Next, we t ra ined and 

tested on 1000 (1280 x 720) another synthesized images 

scattered densely on three d ifferent backgrounds: 

blackboard, illuminated paper, empty (dataset2). 

2.3. Process 

We first  examined existing methods of scene text 

detection techniques. First, we tried to apply CRAFT 

(Character Region Awareness for Text Detection) [3] 

methods into our problem. It predicts confidence map of 

each character in  various circumstances with affinity score 

map which describes connection of consecutive characters.  

CRAFT was able to detect text of polygonal shape and 

we though that it would work well with math formulas. 

However, compared to most of common texts where all 

characters are connected linearly, math formulas are also 

connected vertically, and some expressions are nested 

inside others. Because of such properties, the complex 

connections and relations on math formulas were hard to 

label, and difficult to train by using CRAFT. 

We found EAST model seems to capture text bounding 

boxes well in various circumstances without considering 

the orientation of connection, but not the math formulas. So, 

we decided to train this model with our dataset. 

However, original EAST model showed  low efficiency 

on finding bounding boxes of long math formula . We 

analyzed it to  be because of the complexity of its last output 

layer. We decided to delete rotation prediction and to 

predict both sides ends of the formula. It decreased 

computational complexity and increased performance on 

long math formulas. 

2.4. Implementation 

Preprocess and labeling processes are the same the EAST 

model. We used VGG16 as the backbone of the feature 

extractor. For loss function, we adopted balanced cross 

entropy to predict score map of each point and side end 

scope map, introduced by the EAST paper. For side vertex 

coordinates, we used smoothed-L1 loss which was used for 

QUAD region in the original paper.  

We first converted all the data  images to have horizontal 

size 512 and labeled on each pixel with output scores. For 

dataset 1, training was done 12 epoch and dataset 2 in 40. In 

both cases, 10% of the training data was used for validation 

set. 

2.5. Evaluation 

For evaluation, we use the same strategy used for 

COCO-text. We determined the detected box is True 

Positive (TP) when its IoU (Intersection over Union) with 

the ground truth box is greater than the IoU threshold, and 

False Positive (FP) when it IoU is less than the IoU 

threshold. The bounding boxes that should be detected but 

not found are marked as False Negative (FN). Based on the 

number of TP, FP, FN, we calculated precision score, recall 

score, and F1-score. Then F1 score can estimate precision 

and accuracy of the results. Because a ll three scores are 

dependent on IoU threshold, we calculated 10 scores 

corresponding to IoU thresholds in a range of 0.5 to 0.95 

increased by 0.05. By averaging those 10 scores, we 

calculated final averaged scores. 

2.6. Result   

2.6.1 Qualitative results. 

 
 

 

 
 

 

Upper part of Figure 2 and 3. shows detected boxes, and 

Figure 2. Qualitative results on the dataset1 

Figure 3. Qualitative results on the dataset2 
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lower part of the figures shows visualized score map. Red 

part means score of the pixel is higher than the threshold. 

Yellow and green part means each side (left and right) end 

score of the pixel is higher than the threshold.  

On first dataset, it seems to detect better on longer 

formula and the formulas whose characters are in a similar 

size. Fractions, subscripts, and superscripts are difficult to 

detect and be recognized as one formula . In other models, 

they were not contained in one bounding box, but were 

separated into several bounding boxes. 

However, with the model trained by dataset 1, we could 

see that fractions, subscript, and superscript are detected 

and included in one bounding box.  

On the second dataset, it detected well on empty 

backgrounds, but images on other background showed 

problems. Some formulas are not detected or detected in a 

merged form because its side end is not well detected. 

 

2.6.2 Quantitative results 

 

 
 

On dataset1, when IoU threshold is less than 0.90, we got 

more than 62% well-matched bounding boxes. As 

compared with qualitative results, its performance was 

quite desirable. However, on dataset2, performance 

decreased rapidly. 

2.7. Conclusion 

We got the desirable result on the simpler data , dataset1. 

However, the data  set that we generated is that of restricted 

circumstances. Model trained with dataset2, containing 

more generalized data, showed rapidly decreased 

performance. We concluded that we need to augment the 

data set rationally, and we may need to change models to 

increase the performance. Unlike detecting individual 

characters or linearly connected texts, detecting math 

formulas has several properties and difficulties. Despite 

needing modification to increase performance, we showed 

that bounding boxes of math formula can be detected by 

using existing scene text detection methods and by 

modifying them to be applied on formulas.  

3. Problem: Image-to-Markup Conversion 

We define the image-to-markup conversion problem as 

converting detected handwritten math formulas into LaTeX 

or MathML math formula  markup. 

3.1. Model 

Our model is based on the encoder-decoder model [1]. 

The model is comprised of three components, 

convolutional network (CNN), row encoder, and decoder. 

CNN extracts visual features from the input image. Then 

RNN row encoder is applied to each row in the final feature 

map. The RNN decoder with a visual attention mechanism 

then uses the encoded features to produce the final outputs. 

 

 
Figure 4. Network  structure for image-to-markup 

conversion.  

3.2. Data 

We used two publicly available handwritten math 

formula datasets. One, dataset provided by CROHME 

(Competition on Recognition of Online Handwritten 

Mathematical Expressions) 2013 was used. Of the 

CROHME 2013 dataset, KAIST and MathBrush dataset 

were p rimarily  used. KAIST dataset is comprised of 

approximately 1k images and MathBrush, approximately 

3k.  

 

 
Table 2. CROHME dataset categorization standards 

 

Table 1. Average precision, recall, F1 score of each dataset 
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The whole CROHME dataset is also used and divided 

according to complexity of the formulas. Table 1. Shows 

the standard in which the dataset was categorized. 
As data were stored in InkML file format, ground truth 

math formulas were extracted, and ink traces were 

converted to png image files. The ground truth from 

INKML is in MathML format, different from that of LaTeX. 

However, as there seemed to be no sign ificant difference 

between the two, no further preprocessing was done to 

convert MathML to LaTeX. 

Two, Im2latex-100k-handwritting dataset provided by 

Harvard NLP was used. From 100k data, datasets of size 1k, 

2k, 5k, denoted, Im2latex-1k, Im2latex-3k, Im2latex-5k are 

extracted for use.  

Both dataset images are preprocessed to reduce 

computation and needed memory. Original images are 

cropped and padded with 8 pixels on all sides. Then are 

down sampled to half of their original sizes. 

3.3. Process 

OCR techniques existed for rendered images of math 

formula, but not many for handwritten math formulas. We 

decided to directly apply the model provided by [1]. 

Harvard NLP provided an official implementation of the 

paper in Torch. Training the official implementation in 

Google Colab proved to be a challenge, and to enable 

training, we decided to implement the paper in Pytorch. 

There already existed an unofficial implementation of 

the paper in GitHub. However, the implementation was 

incomplete, and needed fixing. We created an evaluation 

code and fixed other miscellaneous bugs. Then trained 

using the CROHME 2013 and Im2latex-100k-handwrit ing 

dataset.  

Training with Im2latex-100k-handwriting proved 

difficult with the small datasets providing no training at all. 

Deducing that it was because of the complexity of the math 

formulas along with small number of training data, we 

decided to focus on training with CROHME dataset which 

contained simple math formulas. 

We decided to further separate the CROHME dataset 

according to math formulas’ complexity. Training with 

separated CROHME dataset according to  complexity, 

proved to be productive and resulted in successful 

conversion from image to markup. 

3.4. Implementation 

Given that Google Colab disconnect after a certain 

period of time, Time-consuming long-term training was 

impossible and hence the epoch was fixed at 25. 
The initial learning rate is set to 3e-4, and we halve it 

once the validation average loss does not decrease. Weights 

for the model are saved after each epoch and weight with 

the minimum validation loss was chosen for evaluating.  

3.5. Evaluation 

The evaluating code stores the reference and result  

markup in separate files. Our core evaluation method is to 

compare them. Spatial arrangements and blank spaces in 

formula images in  ground truth is denoted as <pad>. 

Sequences of <pad> has no formula meaning. Character by 

character comparison couldn’t be done and comparisons 

were manually done. Markups with less than two different 

components were deemed to be match. 

3.6. Results 

 
Table 3. Im2latex dataset experiments. 

 

The experimental results on Im2latex dataset can be seen 

in Table 2. These resu lts compare evaluation results of 

several datasets of different sizes, 1k, 2k, 5k. For each size, 

the model was unable to convert every image to the correct 

markup and returned sequences of <unk>. 

 

 
Table 4. CROHME 2013 KAIST, MathBrush dataset 

experiments. 

 

 
Figure 5. Example output of model trained with MathBrush 

dataset. The two upper markups result in a match and the 

two lower markups result in a mismatch. 

 

The experimental results on CROHME 2013 KAIST and 

MathBrush dataset can be seen in Table 3. The CROHME 

2013 dataset is comprised of math formulas simpler than 

that of Im2latex-100k-handwritten dataset. That is why 

despite KAIST and Im2latex-1k dataset being near size, 

performances when dealing with KAIST dataset is better. 
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For the same reason performance of model trained on 

MathBrush dataset is better than one trained with 

Im2latex-3k. 

 

 
Table 5. CROHME level-0~4 dataset experiments 

 

Table 4 shows results on varying degrees of math 

formula complexity. Unexpectedly, even with much 

simpler datasets, model was not able to convert image to 

markup. Only model trained with CROHME level-0  

returned some semblance of a result and achieve 3.3% 

accuracy. 

 

 
Table 6. Handwritten image to markup experiments. 

Compares accuracy between different models used. 

 
Comparison between best performance achieved by our 

method and other handwritten math formula 

image-to-markup results can be seen in Table 5.  All other 

models were trained with the full CROHME 2013 and 2014 

dataset. 

3.7. Conclusion 

As expected, when used for handwritten images, the 

model performed worse compared to when used for 

rendered images. Im2latex dataset contained complex 

formulas and it was difficult to train with small datasets. 

Compared to the amount of possible input’s formula spa tial 

arrangement and used symbol, the datasets were too small.  

As for CHROME level-0~4 dataset, even though they 

were comprised of much simpler formulas, by extracting 

them from the whole CROHME dataset, the number of data 

was also too small. We deduce the reason for training with 

KAIST and MathBrush data being successful, as a balanced 

mix of formula complexity and number of data . 

Despite being limited on computing resources, scale of 

dataset and training, we were able to d irectly  use models for 

rendered-image-to-latex to handwritten images. 

Even without additional preprocessing to approximate 

handwriting images to rendered images, it was shown it is  

possible. With increased scale of dataset and more 

computing resources, we expect the performa nce to 

increase and the model to work for Im2latex data as well. 

3. Final Conclusion 

We have presented that pre-existing models and method 

used for general OCR and rendered image-to-markup is a 

viable approach to math formula recognition. We separated 

the recognition task into two parts, detecting formula 

bounding boxes from an image containing multiple 

formulas and predicting a latex code from a formula image. 

We planned to develop one integrated model when we 

managed to solve the two subproblems, but faced technical 

difficulties, and were unable to do so.  

One of the most serious difficulty was preparing the 

dataset. We generated handwritten math formula data by 

processing CROHME 2013 data set and labeled it with 

position of bounding boxes and ground truth latex code. 

Taking into account that rendered image-to-markup 

approach by Harvard NLP used im2latex dataset with 100k 

images, we assumed getting generally working resu lt with 

the CROHME dataset which is roughly less than 10k would 

be difficult. So, we d ivided dataset with various criterion, 

and trained and tested on them to get the results. 

We used Google Colab to train the model due to the 

absence of computing resources. Since our approach 

required computationally heavy tasks, training the model 

took extremely long and was the most difficult part of the 

project. If we can train the model on bigger data set with 

more powerful computing resource, we expect our div ided 

data set would produce reliable results and perform well 

enough to be used on general handwritten math formula 

images. 

References 
[1] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and 

Alexander M. Rush. Image-to-markup generation with 

coarse-to-fine attention. ICML, 2017 

[2] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang 

Zhou, Weiran He, and Jiajun Liang. EAST: An Efficient and 
Accurate Scene Text Detector. CVPR, 2017 

[3] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character 

region awareness for text detection. CVPR, 2019. 


